skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Masseron, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. The atmospheres of phosphorus-rich (P-rich) stars have been shown to contain between 10 and 100 times more P than our Sun. Given its crucial role as an essential element for life, it is especially necessary to uncover the origin of P-rich stars to gain insights into the still unknown nucleosynthetic formation pathways of P in our Galaxy. Aims. Our objective is to obtain the extensive chemical abundance inventory of four P-rich stars, covering a large range of heavy (Z > 30) elements. This characterization will serve as a milestone for the nuclear astrophysics community to uncover the processes that form the unique chemical fingerprint of P-rich stars. Methods. We performed a detailed 1D local thermodynamic equilibrium abundance analysis on the optical UVES spectra of four P-rich stars. The abundance measurements, complemented with upper-limit estimates, included 48 light and heavy elements. Our focus lay on the neutron-capture elements (Z > 30), in particular, on the elements between Sr and Ba, as well as on Pb, as they provide valuable constraints to nucleosynthesis calculations. In past works, we showed that the heavy-element observations from the first P-rich stars are not compatible with either classical s-process or r-process abundance patterns. In this work, we compare the obtained abundances with three different nucleosynthetic scenarios: a single i-process, a double i-process, and a combination of s- and i-processes. Results. We have performed the most extensive abundance analysis of P-rich stars to date, including the elements between Sr and Ba, such as Ag, which are rarely measured in any type of stars. We also estimated constraining upper limits for Cd I, In I, and Sn I. We found overabundances with respect to solar in the s-process peak elements, accompanied by an extremely high Ba abundance and slight enhancements in some elements between Rb and Sn. No global solution explaining all four stars could be found for the nucleosynthetic origin of the pattern. The model that produces the least number of discrepancies in three of the four stars is a combination of s- and i-processes, but the current lack of extensive multidimensional hydrodynamic simulations to follow the occurrence of the i-process in different types of stars makes this scenario highly uncertain. 
    more » « less
  2. Abstract Stellar abundance measurements are subject to systematic errors that induce extra scatter and artificial correlations in elemental abundance patterns. We derive empirical calibration offsets to remove systematic trends with surface gravity log ( g ) in 17 elemental abundances of 288,789 evolved stars from the SDSS APOGEE survey. We fit these corrected abundances as the sum of a prompt process tracing core-collapse supernovae and a delayed process tracing Type Ia supernovae, thus recasting each star’s measurements into the amplitudesAccandAIaand the element-by-element residuals from this two-parameter fit. As a first application of this catalog, which is 8× larger than that of previous analyses that used a restricted log ( g ) range, we examine the median residual abundances of 14 open clusters, nine globular clusters, and four dwarf satellite galaxies. Relative to field Milky Way disk stars, the open clusters younger than 2 Gyr show ≈0.1−0.2 dex enhancements of the neutron-capture element Ce, and the two clusters younger than 0.5 Gyr also show elevated levels of C+N, Na, S, and Cu. Globular clusters show elevated median abundances of C+N, Na, Al, and Ce, and correlated abundance residuals that follow previously known trends. The four dwarf satellites show similar residual abundance patterns despite their different star formation histories, with ≈0.2–0.3 dex depletions in C+N, Na, and Al and ≈0.1 dex depletions in Ni, V, Mn, and Co. We provide our catalog of corrected APOGEE abundances, two-process amplitudes, and residual abundances, which will be valuable for future studies of abundance patterns in different stellar populations and of additional enrichment processes that affect galactic chemical evolution. 
    more » « less
  3. Abstract We continue our series of papers on phase-space distributions of stars in the Milky Way based on photometrically derived metallicities and Gaia astrometry, with a focus on the halo−disk interface in the local volume. To exploit various photometric databases, we develop a method of empirically calibrating synthetic stellar spectra based on a comparison with observations of stellar sequences and individual stars in the Sloan Digital Sky Survey, the SkyMapper Sky Survey, and the Pan-STARRS1 surveys, overcoming band-specific corrections employed in our previous work. In addition, photometric zero-point corrections are derived to provide an internally consistent photometric system with a spatially uniform metallicity zero-point. Using our phase-space diagrams, we find a remarkably narrow sequence in the rotational velocity ( v ϕ ) versus metallicity ([Fe/H]) space for a sample of high proper-motion stars (>25 mas yr −1 ), which runs along Gaia Sausage/Enceladus (GSE) and the Splash substructures and is linked to the disk, spanning nearly 2 dex in [Fe/H]. Notably, a rapid increase of v ϕ from a nearly zero net rotation to ∼180 km s −1 in a narrow metallicity interval (−0.6 ≲ [Fe/H] ≲ −0.4) suggests that some of these stars emerged quickly on a short gas-depletion timescale. Through measurements of a scale height and length, we argue that these stars are distinct from those heated dynamically by mergers. This chain of high proper-motion stars provides additional support for recent discoveries suggesting that a starburst took place when the young Milky Way encountered the gas-rich GSE progenitor, which eventually led to the settling of metal-enriched gas onto the disk. 
    more » « less
  4. ABSTRACT Standard stellar evolution theory poorly predicts the surface abundances of chemical species in low-mass, red giant branch (RGB) stars. Observations show an enhancement of p–p chain and CNO cycle products in red giant envelopes, which suggests the existence of non-canonical mixing that brings interior burning products to the surface of these stars. The 12C/13C ratio is a highly sensitive abundance metric used to probe this mixing. We investigate extra RGB mixing by examining: (1) how 12C/13C is altered along the RGB, and (2) how 12C/13C changes for stars of varying age and mass. Our sample consists of 43 red giants, spread over 15 open clusters from the Sloan Digital Sky Survey’s APOGEE DR17, that have reliable 12C/13C ratios derived from their APOGEE spectra. We vetted these 12C/13C ratios and compared them as a function of evolution and age/mass to the standard mixing model of stellar evolution, and to a model that includes prescriptions for RGB thermohaline mixing and stellar rotation. We find that the observations deviate from standard mixing models, implying the need for extra mixing. Additionally, some of the abundance patterns depart from the thermohaline model, and it is unclear whether these differences are due to incomplete observations, issues inherent to the model, our assumption of the cause of extra mixing, or any combination of these factors. Nevertheless, the surface abundances across our age/mass range clearly deviate from the standard model, agreeing with the notion of a universal mechanism for RGB extra mixing in low-mass stars. 
    more » « less
  5. Abstract We present a spectroscopic analysis of a sample of 48 M-dwarf stars (0.2 M ⊙ < M < 0.6 M ⊙ ) from the Hyades open cluster using high-resolution H -band spectra from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Our methodology adopts spectrum synthesis with LTE MARCS model atmospheres, along with the APOGEE Data Release 17 line list, to determine effective temperatures, surface gravities, metallicities, and projected rotational velocities. The median metallicity obtained for the Hyades M dwarfs is [M/H] = 0.09 ± 0.03 dex, indicating a small internal uncertainty and good agreement with optical results for Hyades red giants. Overall, the median radii are larger than predicted by stellar models by 1.6% ± 2.3% and 2.4% ± 2.3%, relative to a MIST and DARTMOUTH isochrone, respectively. We emphasize, however, that these isochrones are different, and the fractional radius inflation for the fully and partially convective regimes have distinct behaviors depending on the isochrone. Using a MIST isochrone there is no evidence of radius inflation for the fully convective stars, while for the partially convective M dwarfs the radii are inflated by 2.7% ± 2.1%, which is in agreement with predictions from models that include magnetic fields. For the partially convective stars, rapid rotators present on average higher inflation levels than slow rotators. The comparison with SPOTS isochrone models indicates that the derived M-dwarf radii can be explained by accounting for stellar spots in the photosphere of the stars, with 76% of the studied M dwarfs having up to 20% spot coverage, and the most inflated stars with ∼20%–40% spot coverage. 
    more » « less
  6. Abstract Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations1. These ‘hot Jupiter’ planets are instead thought to have migrated inward from beyond the ice line and several viable migration channels have been proposed, including eccentricity excitation through angular-momentum exchange with a third body followed by tidally driven orbital circularization2,3. The discovery of the extremely eccentric (e = 0.93) giant exoplanet HD 80606 b (ref. 4) provided observational evidence that hot Jupiters may have formed through this high-eccentricity tidal-migration pathway5. However, no similar hot-Jupiter progenitors have been found and simulations predict that one factor affecting the efficacy of this mechanism is exoplanet mass, as low-mass planets are more likely to be tidally disrupted during periastron passage6–8. Here we present spectroscopic and photometric observations of TIC 241249530 b, a high-mass, transiting warm Jupiter with an extreme orbital eccentricity ofe = 0.94. The orbit of TIC 241249530 b is consistent with a history of eccentricity oscillations and a future tidal circularization trajectory. Our analysis of the mass and eccentricity distributions of the transiting-warm-Jupiter population further reveals a correlation between high mass and high eccentricity. 
    more » « less
  7. Abstract Individual chemical abundances for 14 elements (C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are derived for a sample of M dwarfs using high-resolution, near-infrared H -band spectra from the Sloan Digital Sky Survey-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The quantitative analysis included synthetic spectra computed with 1D LTE plane-parallel MARCS models using the APOGEE Data Release 17 line list to determine chemical abundances. The sample consists of 11 M dwarfs in binary systems with warmer FGK dwarf primaries and 10 measured interferometric angular diameters. To minimize atomic diffusion effects, [X/Fe] ratios are used to compare M dwarfs in binary systems and literature results for their warmer primary stars, indicating good agreement (<0.08 dex) for all studied elements. The mean abundance difference in primaries minus this work’s M dwarfs is −0.05 ± 0.03 dex. It indicates that M dwarfs in binary systems are a reliable way to calibrate empirical relationships. A comparison with abundance, effective temperature, and surface gravity results from the APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) Data Release 16 finds a systematic offset of [M/H], T eff , log g = +0.21 dex, −50 K, and 0.30 dex, respectively, although ASPCAP [X/Fe] ratios are generally consistent with this study. The metallicities of the M dwarfs cover the range of [Fe/H] = −0.9 to +0.4 and are used to investigate Galactic chemical evolution via trends of [X/Fe] as a function of [Fe/H]. The behavior of the various elemental abundances [X/Fe] versus [Fe/H] agrees well with the corresponding trends derived from warmer FGK dwarfs, demonstrating that the APOGEE spectra can be used to examine Galactic chemical evolution using large samples of selected M dwarfs. 
    more » « less
  8. null (Ed.)